
LLNL-JRNL-638982

Growth of deformation twins in
Tantalum via coherent twin
boundary migration

L. A. Sandoval, M. P. Surh, A. A. Chernov, D. F.
Richards

June 13, 2013

Journal of Applied Physics



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



Growth of deformation twins in Tantalum via coherent twin boundary migration

Luis A. Sandoval,∗ Michael P. Surh, Alexander A. Chernov, and David F. Richards
Condensed Matter and Materials,

Lawrence Livermore National Laboratory,
Livermore, CA 94550, USA

In order to investigate the process of twinning growth, the nucleation of twinning dislocation
loops on the coherent boundary of a Tantalum twin superlattice is studied via a molecular dynamics
approach. We get homogeneous nucleation rates by means of a stationarity test and the mean
first-passage method. We study their dependence on driving force and temperature in a framework
given by the Kolgomorov-Johnson-Mehl-Avrami (KJMA) theory. Correspondingly, the contribution
to the twinning growth dictated by this nucleation mechanism, as compared to the pole mechanism,
is discussed. The homogeneous loop nucleation and growth mechanism can be relevant to twinning
in high strain-rate experiments as in shock waves.

I. INTRODUCTION

Twinning is one of the main modes of plastic deforma-
tion in crystals, being particularly important under con-
ditions of low temperature or high strain rates. It is also
a major feature observed in many martensitic transfor-
mations, recrystallization processes and crystal growth
from vapour or liquid phases1,2. In plastic deformation,
the time-dependent volume of twinning contributes to the
overall strain simply according to the eigenstrain of the
twin transformation. However despite decades of work
there are still many open questions on the role of twin-
ning in constitutive behavior, especially in bcc metals.

The complete process of mechanical (deformation)
twinning is divided into nucleation and growth stages.
Computational and experimental evidence suggests that
twins nucleate via a cooperative emission of partials
thanks to the presence of defects which concentrate the
stress required for the process3–5. After nucleation, the
subsequent growth of twin embryos requires stresses con-
siderably lower than those needed for twin nucleation.
Growth is strongly anisotropic due to the competing
role of different mechanisms. The emitted twinning par-
tials form highly mobile incoherent twin boundaries1,6,
which commonly extend until they encounter obstacles
like grain boundaries or other interfaces. The result is
the formation of thin twin lamellae bounded by coherent
twin interfaces. Further twin thickening requires other
mechanisms to form new layers at the coherent bound-
aries.

Twin thickening has been proposed to occur by multi-
ple processes. One of them is the pole mechanism, which
describes the glide of twinning partials around a screw
dislocation in a manner resembling the Frank mechanism
of spiral crystal growth. Another possible mechanism of
twin growth is the 2d-nucleation and growth of (possi-
bly multiple) closed twinning dislocation loops on the
coherent twin boundary. (A related atomistic and con-
tinuum theory study of the homogeneous nucleation of
isolated, perfect dislocation loops has been recently been
published7–9.) This second mechanism can operate in
the absence of additional defects to act as a pole, e.g., in

nearly perfect crystals. The contribution from this mech-
anism has been previously studied in detail1,2, after con-
sidering that the interface region may have distinct elas-
tic properties than the bulk. This is a standard growth
problem that can be treated by the Kolgomorov-Johnson-
Mehl-Avrami (KJMA) theory10–12. We apply atomistic
simulations to obtain the required nucleation and growth
rate parameters versus temperature and stress for this
more continuum-like model.

The total free energy change due to the formation of
an elliptic twin dislocation loop is given by

∆G = −n∆µ+ cγd

= −πa
2
√

1− e2h
ω

∆µ+ 4aE(e)γd , (1)

where n is the number of atoms which belong to the
2d nucleus, ∆µ is the driving force, c is the loop’s cir-
cumference, γd is the line energy density, a is the loop’s
semi-major axis, e denotes the ellipse’s eccentricity, ω
denotes the atomic volume, h corresponds to the step’s
height (distance between (21̄1) planes), and E is the com-
plete elliptic integral of the second kind13. The general-
ized driving force is given by ∆µ = ωσxyε0, that is, it
depends on the average acting stress σxy times the el-

ementary twinning strain ε0 = 1/
√

2, corresponding to
(21̄1)[111̄] twinning in bcc metals2. Assuming a constant
(size-independent) eccentricity, the critical semi-major
axis and activation free energy are given, respectively,
by

a =
ωγd
h∆µ

2E(e)

π
√
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, (2)

and

∆Gc =
ωγ2d
h∆µ

4E2(e)

π
√

1− e2
. (3)

The nucleation rate of twinning dislocation loops on
the interface of a coherent twin boundary, J2d, is ex-
pressed by an Arrhenius-type equation
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J2d = B exp

(
−∆Gc
kT

)
. (4)

For simplicity let us consider that, once nucleated, the
dislocation loop spreads rapidly with a front velocity vt
in all directions on the plane (although, actually, the edge
and screw components move at different speeds). From
KJMA theory the average time required to complete one-
layer twin boundary migration is ∼ (J2dv

2
t )−1/3, there-

fore the growth rate normal to the coherent twin bound-
ary (or velocity of twin thickening) is given by14

vn ∼ h(J2dv
2
t )1/3 . (5)

In this work we focus our attention in the calcu-
lation of nucleation rates using either a simple aver-
age time to nucleation or the mean first-passage times
(MFPT) method15 which considers the clustering of dis-
placed atoms inside the partial dislocation loop. We
combine this with estimates of the partial dislocation
velocity to compare the importance of pole and nu-
cleation/growth mechanisms under typical experimental
conditions. More details of the dislocation stress-velocity
relation and dislocation-dislocation reactions for twin-
ning partials will be considered in a subsequent study. As
expected, the importance of the nucleation and growth
process relative to the pole mechanism increases at higher
stresses. It is expected make significant contributions to
twinning growth in Ta under experimentally achievable
conditions.

II. METHODOLOGY

Deformation twins are formed in bcc on (21̄1) planes

with a shear strain of 1/
√

2 in the [111̄] direction. Our
simulation cell consists of 2021760 atoms in a layered
(twinned) bcc crystal with dimensions 60[111̄]×39[21̄1]×
72[01̄1̄] (about 34.4×31.6×33.7 nm3 at 0 K and 0 GPa),
with periodic boundary conditions in all directions (see
the inset of Fig. 1 (a)). The dynamics is determined by an
improved Finnis-Sinclair potential for Ta16. Before per-
forming nucleation simulations, we studied the atomic
structure of the (21̄1) twin boundary in order to find
the minimum energy interface. Starting from an ideal,
mirror-symmetric twin boundary we changed the relative
location of the grains by translating one of them across
the (21̄1) twin boundary. After this simple minimiza-
tion process (rigid grain translation without relaxation)
we found that the minimum energy interface corresponds
to an isosceles twin boundary2,17, as has been predicted
from ab initio calculations with full relaxation18, which
basically consists of a 1

12 [111̄] shift of one grain relative to
the other one. Subsequently the system was equilibrated
during 50 ps at the desired temperature via a Langevin
thermostat with decay time of 0.1 ps. Additionally, for
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FIG. 1. Schematics of the modeling: the shear stress σxy

is applied along the (21̄1) plane in the [111̄] direction - the
inset in (a). Two modes of stress application are shown in
(a) and (b). 1a) In the constant shear rate (108 s−1) mode,
the stress rises linearly in the elastic regime and peaks at the
onset of plastic deformation. The resulting sawtooth stress
behavior is shown in (a) for different temperatures. 1b) To
simplify the analysis, a constant stress mode is used to find
the nucleation rates. A sawtooth curve from above (green) is
displayed for reference. Its approximate peak stress locates
the region of rapid nucleation on MD timescales. Three ex-
amples of σxy = const. are shown at nearby stresses (blue,
magenta, red). Instantaneous atomic coordinates from the
constant strain rate simulation are used as initial conditions.
Each constant stress case is subjected to an equilibration pro-
cedure (labeled for blue). Only two cases show a nucleation
event in the plot; lower stresses lead to longer nucleation times
on average.

each temperature, the dimensions of the simulation cell
were fully relaxed.

Our goal is to obtain the loop nucleation rates under
stationary conditions, during which the system is held
at constant temperature and strain (this corresponds to
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constant stress, as there are no mobile defects in the sys-
tem to mediate plastic deformation prior to the nucle-
ation of a partial loop). In order to locate the conditions
for timely nucleation, the equilibrated system was sub-
jected to simple shearing along the [111̄] direction at a
constant strain rate of 108 s−1 for each temperature. As
in the previous step, the temperature was controlled via
a strong Langevin thermostat of 0.1 ps. The results are
shown in Fig. 1 (a). In the elastic region there is a linear
increase of stress with strain. The nucleation of a twin-
ning loop converts elastic to plastic strain. This is seen
as a drop of the stress vs. strain curve with the average
yield point dependent on temperature. The loop grows
rapidly enough that the stress falls until the new layer is
completed across the periodic boundary conditions. Sub-
sequently, the stress increases again and another nucleus
may form on either coherent interface, giving the saw-
tooth behavior. A feature of our simulations is that the
size of the simulation box and timescales are such that
there is at most only one stable loop per interface at any
given time, as the release of local stress determined by its
rapid growth is enough to suppress any additional loop
formation.

Once the threshold is located, we select instantaneous
atomic configurations corresponding to systems with sub-
critical strains, taken from times in Fig. 1 (b). The orig-
inal constant strain rate simulation is again shown in
green (300 K). Static strain configurations (red, magenta,
blue) are also shown, selected from points prior to the
first onset of plasticity in the green curve at the sawtooth
instability. Higher stress leads to more rapid nucleation
on average. The hydrostatic pressure is slightly elevated
at these strains, mainly due a change in the stress com-
ponent normal to the twinning plane with value of -0.15
GPa. This relatively small stress is ignored. Instanta-
neous atomic configurations from the constant strain-rate
simulation are then employed as initial states for fixed
strain simulations, where loop nucleation will occur at a
greatly reduced rate. In order to reduce any transient
effect from the dynamic ramp in stress in the preceding
stage, the samples were held at constant strain, quenched
to temperatures of 1 K, and then returned to the desired
temperature over ∆teq = 50 ps, using Langevin ther-
mostats with decay times of 1 ps and 10 ps for the cooling
and heating processes, respectively.

Finally, for each fixed strain value we selected N = 50
independent replicas that remained loop-free during their
thermal cycles. Subsequently, the temperature control is
turned off, and the system evolved in the micro-canonical
ensemble until a nucleation event occurs. We define the
time to first nucleation for the i-th replica, τi, as the
time for which the MD stress, σxy, remains within seven
standard deviations of the average value for loop-free
systems. The nucleation time for each replica is then
an independent random variable from some probability
distribution characteristic of the system conditions and
sample preparation regimen. We estimate the loop nu-
cleation rate from this sampling. As there may still be

an initial interval during which the sample preparation
history perturbs the nucleation process, we applied two
methods, described in the next section, in order to elim-
inate transient effects.

III. RESULTS AND DISCUSSION

A. Direct method: stationarity test

The mean time to first nucleation for a stationary dis-
tribution of loop-free systems at constant temperature
and strain should be independent of when we begin mea-
surement. To get reliable estimates from our ensemble
as prepared in Sec. II, we impose a stationarity test for a
delay-dependent mean nucleation time, τ̄(t0). We choose
a sub-sample of the N original replicas, i = 1, n, with
τi ≥ t0 (i.e., we discard any simulations which nucleate
prior to t0). Then the estimated lifetime is:

τ̄(t0) :=

∑N
i(τi≥t0)(τi − t0)

n(τi ≥ t0)
, (6)

with n(τi ≥ t0) the number of replicas with τi ≥ t0.
Fig. 2 shows the results of this approach for a case at
300 K. Finally, we define an average-window criterion for
t0, within which τ̄(t0) is stable. Estimates for τ̄ using
low values of t0 are discarded, as they may include resid-
ual transient behavior, while high values of t0 are also
avoided, because the small surviving population gives
poor statistics. Within the broad acceptance window, the
selected nucleation times are consistent with the Poisson
distribution, i.e. the loop-free population decays expo-
nentially with time, and the estimated mean or half-life
then provides the nucleation rate.

B. Mean first-passage time

An alternative way to get nucleation rates is based
on the concept of mean first-passage time (MFPT)15,19,
which is defined as the average time τ(n) that a cluster
spends to reach, for the first time, a given size n. For
sufficiently high nucleation barrier, τ(n) can be written
as15

τ(n) =
τJ
2

(
1 + erf(

√
πZ(n− n∗))

)
, (7)

where τJ is the nucleation time, n∗ is the critical clus-
ter size, Z is the Zeldovich factor, and the error func-

tion erf(x) = (2/
√
π)
∫ x

0
e−t2dt. In the context in which

we are working, we consider a cluster as a set of atoms
bounded by the twinning dislocation loop, which are se-
lected by using the centrosymmetry parameter20. The
cluster-size distribution in the system was monitored ev-
ery 1 ps, using the Stoddard algorithm21 with a cutoff
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FIG. 2. Estimated (mean) lifetime to loop nucleation, τJ2d,
versus sample delay-time, t0. The stability of results taken
from the wide interval marked in grey indicates that the ini-
tial sampling is adequately-converged. The inset shows the
number of surviving replicas versus time. The curve approx-
imates an exponential decay for samples starting inside the
acceptance window.

radius of 1.5a0, with a0 the lattice constant. In Fig. 3 we
show the MFPT as a function of the maximum cluster
size for the case corresponding to Fig. 2. A fit to the Eq. 7
gives us a nucleation time of τJ2d = 92.9 ps, in very close
agreement with the result obtained via the stationarity
test, but with a smaller statistical error thanks to its well
defined plateau for larger values of the nucleation size n.
MFPT method also provides information about the crit-
ical cluster size, which is given by the inflection point in
Fig. 3. For 300 K and 1.663 GPa the critical cluster size
is ∼ 12 ± 1 atoms (see insets on Fig. 3). The critical
nucleus is a small perturbation on the entire system, oc-
cupying ∼ 0.1% of the interface area and ∼ 0.001% of
the total cell volume. In order to determine the shape
of the critical cluster, we fitted the distribution of atoms
(averaged over all the replicas) to an ellipse, which gave
us an eccentricity of 0.94±0.5%. The ellipse’s major axis
is oriented along the close-packed [111̄] direction that is
the most probable for local atomic displacement under
the applied shear.

C. Nucleation rates: dependency on driving force
and temperature

The (steady-state) nucleation rate is given by J2d =
1/(2τA), where A is the area of one twin boundary in
the simulation cell, τ is the mean nucleation time in the
given cell, and the factor of 2 corresponds to the number
of coherent interfaces. In Fig. 4 we show a few nucle-
ation rates calculated with system at a fixed strain value
of εxy = 0.0255 for some temperatures in the interval
300-320 K. The slope of the curve gives the value of the
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FIG. 3. Mean first-passage times (MFPT) corresponding to
the case shown in Fig. 2. At 300 K and 1.663 GPa the critical
cluster size is 12±1 atoms. Insets: some of the critical cluster
shapes observed in the simulations. The ellipse (eccentricity
of ∼ 0.94) was obtained after averaging on the replicas. The
major axis is oriented parallel to the close-packed direction
[111̄].

activation energy at this particular strain9, 0.97 eV =
1.55×10−12 erg ±5%, and a line energy γd = 0.035 eV/Å
= 5.62 × 10−6 erg/cm ±5%. The exponential prefac-
tor contains an entropic contribution, formally defined
as the reduction rate of the activation free energy with
increasing temperature9. Using the Debye frequency for
tantalum (5× 1012/s)22 for the frequency prefactor , and
considering the atomic density on the (21̄1) plane (7.44
×1018m−2), an estimate of the entropic contribution in
the constant strain ensemble is ∼18 kB .

We performed a consistency check on the activation en-
ergy by quenching a nearly critical cluster with 15 atoms.
This was done by iteratively freezing and relaxing the
cluster and the rest of the system in order to remove ther-
mal disorder while preventing the collapse of the cluster
at lower temperatures. The activation energy is given by
Ec = E(nc) − E(0), where E(nc) and E(0) denote the
system energies for the configuration with and without
the cluster9. This approach gives us an activation energy
of 0.87 eV = 1.40 ×10−12 erg. An additional comparison
can be made by considering the energy of a circular dis-
location loop7. For a core radius of 2 times the Burgers
vector for the twin dislocation (∼ 2Å), we get 1.05 eV =
1.69 ×10−12 erg, which provides additional confidence in
our results.

In some applications it is desirable to have the nucle-
ation rate as a function of stress for a fixed temperature,
e.g. when an experiment provides a stress history. In
Fig. 5 we show a few nucleation rates calculated with
system at 300 K, as a function of the inverse of the driv-
ing force ∆µ. Because this set of simulations contains
results for slightly different stress values, it is not easy
to uniquely identify the activation energies and entropic
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FIG. 4. Homogeneous nucleation rate for a partial dislocation
loop on the Ta (21̄1) coherent twin interface, as a function
of temperature at fixed strain of εxy = 0.0255. The circles
indicate the results of MD simulations, and the dashed line
corresponds to a fit using Eq. 4.
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FIG. 5. Homogeneous nucleation rate for a partial dislocation
loop on the Ta (21̄1) coherent twin interface, as a function of
the inverse driving force for 300 K. The circles indicate the
results of MD simulations, and the dashed line corresponds
to a fit using Eq. 4.

contributions. A direct fit to this data gives a large expo-
nential prefactor of 2.7 × 1066 m−2s−1, counterbalanced
by a high activation energy of 12.83 eV in the exponen-
tial function. The dramatic difference from the constant
strain case is to be expected; it has already been estab-
lished that the entropic contribution in a constant stress
ensemble is significantly higher than the corresponding
entropic contribution in the constant strain ensemble8,9.

In Fig. 6 we locate some of the nucleation rates ob-
tained in this work on a plot of ∆µ versus temperature.
Due to computational restrictions, direct MD simulations
can only be used to study the nucleation process on a
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FIG. 6. Homogeneous nucleation rates for partial dislocation
loops on the Ta (21̄1) coherent twin interface obtained via di-
rect MD simulations. The parameters at which nucleation is
accessible to direct MD simulations are sketched as a narrow
band, as found using the procedure described in Fig. 1. Typ-
ical experiments fall below this region23. Higher stress and
driving force, ∆µ, imply an increasing contribution from nu-
cleation of twinning dislocation loops as compared to the pole
mechanism. A red square marks one point at which the twin
growth rate by the nucleation of partial dislocations would
equal the one dictated by the pole mechanism. These con-
ditions are relevant to some more dynamic experiments24,25.
Heterogenous loop nucleation generally will be faster than the
homogeneous mechanism shown here and may be experimen-
tally relevant at even lower temperature and driving force.

timescale of a few nanoseconds. Cases at which nucle-
ation is practically achievable are sketched as a narrow
band in Fig. 6, wherein the nucleation rate is approxi-
mately constant. Below this band, the nucleation is too
slow to access in an unaccelerated MD simulation, while
above the nucleation time is short compared to the time
to reach a quasistationary ensemble of replicas at the
given strain. Typically, experiments occur at relatively
low strain rates; dislocation mediated plasticity can ac-
commodate the deformation, and the resulting stress is
low. Such experiments lie below this MD-accessible band.

For moderate to high stresses like those in Fig. 6,
the partial dislocation velocity is expected to saturate
near the shear wave sound velocity. This maximum is
vt ∼ 2000 m/s for this Ta potential. We can now es-
timate a stress at which the migration rate of the co-
herent twin interface due to the nucleation and growth
of twinning dislocations Eq. 5 begins to exceed the cor-
responding growth velocity due to the pole mechanism
under similar thermodynamic conditions, as given by14.

vp =
hvt
4πrc

, (8)

with rc = ωγd/h∆µ the radius of the two-dimensional
critical nucleus. This expression follows from the simplest
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relationship for a single screw dislocation, as the velocity
may vary considerably for a complex extended source,
especially at a high driving force (the “self-interaction”
of partial dislocations in the spiral is stronger at high
stresses, as rc and the spacing between neighboring spiral
turns decrease). At 300 K, the two growth mechanisms
rates reach parity for a shear stress of 1.8 GPa, at vnuc =
vpole ' 67m/s. Assuming isotropy and uniaxial strain26,
such stress corresponds to a normal stress of ∼ 7.5 GPa,
which is attainable at high strain rate conditions, as in
gas-gun plate impact experiments24,26, and laser-driven
compression27. The corresponding conditions have been
highlighted in Fig. 6 (red square).

IV. CONCLUSIONS

By using a molecular dynamics approach we have suc-
cessfully calculated a set of nucleation rates of twinning
dislocation loops for Tantalum at different temperatures.
We have applied a stationarity test and the mean first-
passage time (MFPT) method in order to get nucleation
times. Although both methods provide similar nucleation
times, the MFPT method presents significant advantages
as it considers the kinetics of the process, providing ad-
ditional information (critical size of the twinning dislo-
cation loop, location of the barrier, etc.)

High strain rate or low temperature situations can
reach the kinds of stresses seen in Fig. 6. In such cases,
significant contributions to twin growth from a KJMA
nucleation and growth mechanism can be expected. If
the detailed stress history and final microstructure of a
sample is available, then it will be possible to compare
the predicted twin size to observed microstructure.

An estimate of the contribution to the twinning growth
dictated by the 2d-nucleation mechanism described here
can be obtained by considering some existing experimen-
tal results24. Reed et al. have derived strength infor-
mation from gas-gun-driven plate impact experiments in
Tantalum. Specifically, we have considered the experi-
ment denoted as “shot 1576”, characterized by a peak
pressure of ∼ 10 GPa, and peak deviatoric stress (or
peak shear stress, here taken as σxy) and strain rate of

∼ 0.9 GPa and 2 × 106/s, respectively, within an inter-
val of high stress of 0.5 µs. By using their deviatoric
stress histories and integrating the growth rate, Eq. 5,
over this time interval, we get a negligible average twin
thickness from nucleation and growth. Although a micro-
structural analysis was not included in Ref. 24, we could
predict, by considering Eq. 8, a final average thickness
of ∼ 40 µm. This suggests that twins formed in those
experiments grew exclusively by the pole mechanism. It
is interesting to note that if the deviatoric stress history
had peak values of 2 GPa (over the same time inter-
val), twin grown by 2d-nucleation of twinning disloca-
tion loops would also have average thickness values of ∼
40 µm. This gives us an idea of the conditions under
which exists a strong competition of these two twinning
growth mechanisms. However, the comparison may be
complicated by the possibility of other models for coher-
ent boundary growth. This will be studied in a future
publication. Additionally it is worth pointing out that
interactions with the microstructure, which are not be-
ing considered here, could limit the twin growth in real
materials.

The order of magnitude of nucleation rates reachable
via direct MD simulation is ∼ 1024m−2s−1, which de-
fines a narrow band of nucleation rates in the driving
force vs. temperature plot. Adoption of an accelerated
molecular dynamics scheme would be advantageous7,8 in
order to extend the range of of nucleation rates by orders
of magnitude. This would allow to study the validity of
the Eq. 4, and would provide improved parameters for
twinning constitutive models. This is also a subject of
ongoing study.
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